Abstract:Objective This study aims to summarize the latest progress of endogenous regeneration and repair in musculoskeletal system and its possible mechanism. Methods Literature on the study of endogenous regeneration and repair in bone, cartilage, intervertebral disc, and muscle (tendon) published before September 2023 was searched in NCBI, Web of Science, CNKI, and Wanfang databases, and 348 studies were retrieved. According to inclusion and exclusion criteria, 49 studies were finally included and used to analyze the possible mechanism of endogenous regeneration and repair in the musculoskeletal system. Results Endogenous regeneration and repair was conducted in bone, cartilage, intervertebral disc, muscles, and tendon to promote the regeneration and repair of related tissues by introducing relevant biological signals (such as homing signals, etc.) or single bioengineering scaffold. The mechanism of endogenous regeneration and repair may involve the expression of receptors and adhesion molecules, the interaction with endothelial cells, and the induction of the immune system. Conclusion The research of endogenous regeneration and repair in the musculoskeletal system has made great progress. Promoting endogenous regeneration and repair of tissues is a promising method in regenerative medicine and has a broad prospect in clinical application in the future.
徐蔚然, 耿菲, 王银环. 骨肌系统内源性再生修复的研究进展[J]. 中华解剖与临床杂志, 2023, 28(12): 842-846.
Xu Weiran, Geng Fei, Wang Yinhuan. Research progress on endogenous regeneration and repair of the musculoskeletal system. Chinese Journal of Anatomy and Clinics, 2023, 28(12): 842-846.
Cancedda R, Giannoni P, Mastrogiacomo M.A tissue engineering approach to bone repair in large animal models and in clinical practice[J]. Biomaterials, 2007,28(29):4240-4250. DOI: 10.1016/j.biomaterials.2007.06.023
[2]
Pringels L, Cook JL, Witvrouw E, et al.Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: a narrative review and conceptual framework[J]. Br J Sports Med, 2023,57(16):1042-1048. DOI: 10.1136/bjsports-2022-106066
[3]
Midgley AC, Wei Y, Li Z, et al.Nitric-oxide-releasing biomaterial regulation of the stem cell microenvironment in regenerative medicine[J]. Adv Mater, 2020,32(3):e1805818. DOI: 10.1002/adma.201805818
[4]
Ling L, Hou J, Liu D, et al.Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI)[J]. Stem Cell Res Ther, 2022,13(1):79. DOI: 10.1186/s13287-022-02759-6
[5]
Jiang Q, Huang K, Lu F, et al.Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation[J]. Gen Thorac Cardiovasc Surg, 2022,70(1):1-10. DOI: 10.1007/s11748-021-01696-0
[6]
Einhorn TA.The cell and molecular biology of fracture healing[J]. Clin Orthop Relat Res, 1998(355 Suppl):S7-S21. DOI: 10.1097/00003086-199810001-00003
[7]
Xiao Y, Han C, Wang Y, et al.Interoceptive regulation of skeletal tissue homeostasis and repair[J]. Bone Res, 2023,11(1):48. DOI: 10.1038/s41413-023-00285-6
[8]
Liu YS, Ou ME, Liu H, et al.The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration[J]. Biomaterials, 2014,35(15):4489-4498. DOI: 10.1016/j.biomaterials.2014.02.025
[9]
Zhang W, Zhu C, Wu Y, et al.VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation[J]. Eur Cell Mater, 2014,27:1-11. DOI: 10.22203/ecm.v027a01
[10]
Chen Q, Zheng C, Li Y, et al.Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration[J]. ACS Appl Mater Interfaces, 2018,10(28):23700-23710. DOI: 10.1021/acsami.8b08606
[11]
Cunniffe GM, Vinardell T, Murphy JM, et al.Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing[J]. Acta Biomater, 2015,23:82-90. DOI: 10.1016/j.actbio.2015.05.031
[12]
Petersen A, Princ A, Korus G, et al.A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects[J]. Nat Commun, 2018,9(1):4430. DOI: 10.1038/s41467-018-06504-7
[13]
Hu H, Liu W, Sun C, et al.Endogenous repair and regeneration of injured articular cartilage: a challenging but promising therapeutic strategy[J]. Aging Dis, 2021,12(3):886-901. DOI: 10.14336/AD.2020.0902
[14]
Lee CH, Cook JL, Mendelson A, et al.Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study[J]. Lancet, 2010,376(9739):440-448. DOI: 10.1016/S0140-6736(10)60668-X
[15]
Wang Y, Huang YC, Gertzman AA, et al.Endogenous regeneration of critical-size chondral defects in immunocompromised rat xiphoid cartilage using decellularized human bone matrix scaffolds[J]. Tissue Eng Part A, 2012,18(21-22):2332-2342. DOI: 10.1089/ten.TEA.2011.0688
[16]
Re'em T, Witte F, Willbold E, et al. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system[J]. Acta Biomater, 2012,8(9):3283-3293. DOI: 10.1016/j.actbio.2012.05.014
[17]
Zhang F, Leong W, Su K, et al.A transduced living hyaline cartilage graft releasing transgenic stromal cell-derived factor-1 inducing endogenous stem cell homing in vivo[J]. Tissue Eng Part A, 2013,19(9-10):1091-1099. DOI: 10.1089/ten.TEA.2012.0441
[18]
Li MH, Xiao R, Li JB, et al.Regenerative approaches for cartilage repair in the treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2017,25(10):1577-1587. DOI: 10.1016/j.joca.2017.07.004
[19]
梁菁, 勾禹, 夏荣林, 等. 内源性修复细胞募集支架与组织工程自体软骨移植修复兔膝关节软骨缺损的长期疗效对比研究[J]. 中华生物医学工程杂志, 2023,29(2):121-128. DOI:10.3760/cma.j.cn115668-20221109-00231.Liang J, Gou Y, Xia RL, et al.A comparative study on the long-term efficacy of endogenous repair cell recruitment scaffold and tissue engineering autologous cartilage transplantation for repairing cartilage defects of rabbit knee joint[J]. Chinese Journal of Biomedical Engineering, 2023,29(2):121-128. DOI:10.3760/cma.j.cn115668-20221109-00231
[20]
Zhang W, Zhang Y, Li X, et al.Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects[J]. Mater Today Bio, 2022,14:100251. DOI: 10.1016/j.mtbio.2022.100251
[21]
Lyu FJ, Cheung KM, Zheng Z, et al.IVD progenitor cells: a new horizon for understanding disc homeostasis and repair[J]. Nat Rev Rheumatol, 2019,15(2):102-112. DOI: 10.1038/s41584-018-0154-x
[22]
Liu Y, Li Y, Nan LP, et al.Insights of stem cell-based endogenous repair of intervertebral disc degeneration[J]. World J Stem Cells, 2020,12(4):266-276. DOI: 10.4252/wjsc.v12.i4.266
[23]
Liu J, Tao H, Wang H, et al.Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration[J]. Stem Cells Dev, 2017,26(12):901-911. DOI: 10.1089/scd.2016.0314
[24]
Zhang H, Zhu T, Zhang L, et al.Stromal cell‑derived factor‑1 induces matrix metalloproteinase expression in human endplate chondrocytes, cartilage endplate degradation in explant culture, and the amelioration of nucleus pulposus degeneration in vivo[J]. Int J Mol Med, 2018,41(2):969-976. DOI: 10.3892/ijmm.2017.3278
[25]
Pattappa G, Peroglio M, Sakai D, et al.CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture[J]. Eur Cell Mater, 2014,27:124-136. DOI: 10.22203/ecm.v027a10
[26]
Zhu L, Yang Y, Yan Z, et al.Controlled release of TGF-β3 for effective local endogenous repair in IDD using rat model[J]. Int J Nanomedicine, 2022,17:2079-2096. DOI: 10.2147/IJN.S358396
[27]
Zhang H, Yu S, Zhao X, et al.Stromal cell-derived factor-1α-encapsulated albumin/heparin nanoparticles for induced stem cell migration and intervertebral disc regeneration in vivo[J]. Acta Biomater, 2018,72:217-227. DOI: 10.1016/j.actbio.2018.03.032
[28]
Sakai D, Nishimura K, Tanaka M, et al.Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse: a pilot study[J]. Spine J, 2015,15(6):1356-1365. DOI: 10.1016/j.spinee.2013.07.491
[29]
Jiang L, Lu J, Chen Y, et al.Mesenchymal stem cells: an efficient cell therapy for tendon repair (Review)[J]. Int J Mol Med, 2023,52(2):70. DOI: 10.3892/ijmm.2023.5273
[30]
Ramírez M, Lucia A, Gómez-Gallego F, et al.Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury[J]. Br J Sports Med, 2006,40(8):719-722. DOI: 10.1136/bjsm.2006.028639
[31]
Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors[J]. Science, 1998,279(5356):1528-1530. DOI: 10.1126/science.279.5356.1528
[32]
Borselli C, Storrie H, Benesch-Lee F, et al.Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors[J]. Proc Natl Acad Sci USA, 2010,107(8):3287-3292. DOI: 10.1073/pnas.0903875106
[33]
Shimode K, Iwasaki N, Majima T, et al.Local upregulation of stromal cell-derived factor-1 after ligament injuries enhances homing rate of bone marrow stromal cells in rats[J]. Tissue Eng Part A, 2009,15(8):2277-2284. DOI: 10.1089/ten.tea.2008.0224
[34]
Sun J, Mou C, Shi Q, et al.Controlled release of collagen-binding SDF-1α from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model[J]. Biomaterials, 2018,162:22-33. DOI: 10.1016/j.biomaterials.2018.02.008
[35]
Mastrogiovanni M, Juzans M, Alcover A, et al.Coordinating cytoskeleton and molecular traffic in T cell migration, activation, and effector functions[J]. Front Cell Dev Biol, 2020,8:591348. DOI: 10.3389/fcell.2020.591348
[36]
Liang Q, Du L, Zhang R, et al.Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo[J]. Cell Prolif, 2021,54(3):e12997. DOI: 10.1111/cpr.12997
[37]
Shi Z, Xu Y, Mulatibieke R, et al.Nano-silicate-reinforced and SDF-1α-loaded gelatin-methacryloyl hydrogel for bone tissue engineering[J]. Int J Nanomedicine, 2020,15:9337-9353. DOI: 10.2147/IJN.S270681
[38]
Kim HR, Kim KW, Kim BM, et al.Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis[J]. Arthritis Rheumatol, 2014,66(3):538-548. DOI: 10.1002/art.38286
[39]
Wynn RF, Hart CA, Corradi-Perini C, et al.A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood, 2004,104(9):2643-2645. DOI: 10.1182/blood-2004-02-0526
[40]
Cuesta-Gomez N, Graham GJ, Campbell J.Chemokines and their receptors: predictors of the therapeutic potential of mesenchymal stromal cells[J]. J Transl Med, 2021,19(1):156. DOI: 10.1186/s12967-021-02822-5
[41]
Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, et al.The chemokine receptors Ccr5 and Cxcr6 enhance migration of mesenchymal stem cells into the degenerating retina[J]. Mol Ther, 2021,29(2):804-821. DOI: 10.1016/j.ymthe.2020.10.026
[42]
Girousse A, Mathieu M, Sastourné-Arrey Q, et al.Endogenous mobilization of mesenchymal stromal cells: a pathway for interorgan communication?[J]. Front Cell Dev Biol, 2020,8:598520. DOI: 10.3389/fcell.2020.598520
[43]
Rüster B, Göttig S, Ludwig RJ, et al.Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells[J]. Blood, 2006,108(12):3938-3944. DOI: 10.1182/blood-2006-05-025098
[44]
Steingen C, Brenig F, Baumgartner L, et al.Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells[J]. J Mol Cell Cardiol, 2008,44(6):1072-1084. DOI: 10.1016/j.yjmcc.2008.03.010
[45]
De Becker A, Van Hummelen P, Bakkus M, et al.Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3[J]. Haematologica, 2007,92(4):440-449. DOI: 10.3324/haematol.10475
[46]
Wells JM, Watt FM.Diverse mechanisms for endogenous regeneration and repair in mammalian organs[J]. Nature, 2018,557(7705):322-328. DOI: 10.1038/s41586-018-0073-7
[47]
Michael S, Achilleos C, Panayiotou T, et al.Inflammation shapes stem cells and stemness during infection and beyond[J]. Front Cell Dev Biol, 2016,4:118. DOI: 10.3389/fcell.2016.00118
[48]
Karin M, Clevers H.Reparative inflammation takes charge of tissue regeneration[J]. Nature, 2016,529(7586):307-315. DOI: 10.1038/nature17039
[49]
Patel AS, Smith A, Nucera S, et al.TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb[J]. EMBO Mol Med, 2013,5(6):858-869. DOI: 10.1002/emmm.201302752